fbpx
CALL US
+1 734.763.1021
E-MAIL
entrepreneurship@umich.edu
LOCATION
3rd Floor, Duderstadt Center 48109

Innovation Hub for Advanced Transportation

At a time when we see rapid transformation in how we use transportation, the Michigan Translational Research and Commercialization (MTRAC) Innovation Hub for Advanced Transportation is positioned to catalyze the continued development of transportation technology in today’s world. MTRAC is a statewide program that funds projects which commercialize university research into products or services that shape the future of transportation technology or address poorly met transportation market needs. 

This 1-year program accelerates the transition of university research ideas to real-world products and applications in the transportation space by providing up to $100K in funding and access to industry mentors. The program reinforces State of Michigan’s Michigan Strategic Fund (MSF), the MEDC and U-M’s commitment to use entrepreneurship as a catalyst for economic growth in the State and beyond.

It is open to researchers in institutions of higher education as well as non-profit research centers in the State of Michigan. This hub is jointly run by the U-M Center for Entrepreneurship and U-M Office of Technology Transfer in partnership with the Michigan Economic Development Corporation. Funding decisions are made by an external oversight committee consisting of investors, industry personnel and innovation partners. 

Focus areas include but are not limited to: 

  • Mobility solutions
  • Advanced materials
  • Robotics and autonomy
  • Sensors 
  • Electric vehicle drivetrain / propulsion
  • Software / controls / data
  • Advanced manufacturing processes

 

 

Updated MTRAC Graphic-20
CFE-Logo
TechTransfer_Small
medc-logo

MTRAC HUBS ACROSS MICHIGAN

TIMELINE

Full proposal applications are typically accepted January through March and finalists are notified by April. Finalist teams pitch their idea to the oversight committee in June and funding goes from August 1 - July 31. It is highly recommended that potential applicants get in touch with program managers early to get support with the application process. 

MTRAC Application Info Webinar

Webinar takes place 12 – 1 p.m.

December 18, 2019

MTRAC Application Info Webinar

Webinar takes place 12 – 1 p.m.

December 18, 2019

MTRAC Application Info Webinar

Webinar takes place 12 – 1 p.m.

January 10, 2020

MTRAC Application Info Webinar

Webinar takes place 12 – 1 p.m.

January 10, 2020

Main Award RFP Opens

January 10, 2020

Main Award RFP Opens

January 10, 2020

Intro to Customer Discovery Kickoff

January 24, 2020

Intro to Customer Discovery Kickoff

January 24, 2020

Intro to Customer Discovery Midpoint

February 7, 2020

Intro to Customer Discovery Midpoint

February 7, 2020

MTRAC Application Info Webinar

Webinar takes place 12 – 1 p.m.

February 14, 2020

MTRAC Application Info Webinar

Webinar takes place 12 – 1 p.m.

February 14, 2020

Intro to Customer Discovery Finale

February 21, 2020

Intro to Customer Discovery Finale

February 21, 2020

Main Award RFP Closes at 11:59 p.m.

March 18, 2020

Main Award RFP Closes at 11:59 p.m.

March 18, 2020

Main Award Finalist Presentations

June 5, 2020

Main Award Finalist Presentations

June 5, 2020

Main Award Funding Cycle Begins

August 1, 2020

Main Award Funding Cycle Begins

August 1, 2020

PROGRAM  CONTACTS

34110456652_9a96295a8c_k-attachment

Eric Petersen

Program Director
ericp@umich.edu

35508149293_15643c846c_k-attachment

Lora Stevens

Technology Acceleration Programs Manager
slora@umich.edu

Name: Divya Patil 
Uniquename: dpatilha
Department: CfE

Photo: Akhil Kantipuly Michigan Engineering Communications & Marketing

Divya Patil Hangargekar

Technology Development Specialist
dpatilha@umich.edu

CURRENT  AWARDEES

2019 – 2020 

A High-Speed Polymer-to-Metal Direct Joining Method
A high speed polymer-to-metal direct joining system which enables lower cost, higher performance multi-material structures.

Fengchao Liu

Principal Investigator: Fengchao Liu, University of Michigan – Ann Arbor, MI

AVGuardian: Automated Safety Compliance Verification for Autonomous Vehicle Software
An automated software verification solution which efficiently validates the safety rule compliance of autonomous vehicle operating software.

Z Morley Mao

Principal Investigator: Z. Morley Mao, University of Michigan – Ann Arbor, MI

Boosting the Accuracy of High-speed 3D Printers
A vibration compensation solution which improves printer accuracy without compromising its speed.

Chinedum Okwudire

Principal Investigator: Chinedum Okwudire, University of Michigan – Ann Arbor, MI

DM-TJI Ignition for High-Efficiency Gasoline Engines
An internal combustion engine ignition system which provides  a high level of combustion stability and significantly improves efficiency over a conventional DISI engine over a wide range of engine operation.

Harold Schock

Principal Investigator: Harold Schock, Michigan State University – East Lansing, MI

Intelligent Flight Companion
A high-density drone delivery network which enables an 80% reduction of personal trips.

Yanchao Liu

Principal Investigator: Yanchao Liu, Wayne State University – Detroit, MI

Next-Gen Nano-Positioning Stages for High-throughput Semiconductor Metrology
A high performance, low cost nano-positioning system which enables a 1000% increase in semiconductor wafer inspection throughput.

Shorya Awtar

Principal Investigator: Shorya Awtar, University of Michigan – Ann Arbor, MI

Tooling and Billet Designs for Materially Efficient Light Metal Transport Extrusion
An extrusion design solution which reduces scrap generation by 25-50%.

Daniel Cooper

Principal Investigator:Daniel Cooper, University of Michigan – Ann Arbor, MI

PAST  AWARDEES

Advanced Wireless Technology
An advanced wireless system that provides long coverage range and high data rate connectivity to enable autonomous vehicle data flow and infotainment data flow.

Principal Investigator: David Wentzloff, University of Michigan – Ann Arbor, MI


All-Weather LIDAR System for Autonomous Vehicles
Light detection and ranging (LIDAR) system that provides improved object recognition, particularly in inclement weather, and that packages into various vehicle designs.

Principal Investigator: Nicholas Kotov, University of Michigan – Ann Arbor, MI


Coaxial Thermophone for Active Noise Control in Vehicles
Carbon nanotube thin-film thermophone wrapped coaxially around an exhaust pipe to actively control noise at low system size and weight.

Principal Investigator: Andrew Barnard, Michigan Technological University – Houghton, MI


Durable, Elastomeric, Antimicrobial Coatings with Instant and Persistent Efficacy
Antimicrobial coatings for high touch interior surfaces (e.g. dashboards, handholds, cup holders, touch screens, tray tables, seats and steering wheel) of transportation vehicles.

Principal Investigators: Anish Tuteja & Geeta Mehta, University of Michigan – Ann Arbor, MI


High-Resolution RADAR Imaging for Autonomous Vehicles
Millimeter-wave distributed RADAR imager for high-resolution imaging which operates in all weather conditions and costs less than existing LIDAR systems.

Principal Investigator: Jeffrey Nanzer, Michigan State University – East Lansing, MI 


Self-Powered IoT for Smart Manufacturing and Transportation
Vibration energy harvester with high power density, wide operation bandwidth, multi-axis operation capability, and low cost for powering Internet of Things (IoT) nodes.

Principal Investigator: Ethem Erkan Aktakka, University of Michigan – Ann Arbor

Enhanced Object Recognition LIDARs for Robotics
A system to complement the distance ranging of LIDARs with fast and accurate object recognition, which will enable LIDAR point clouds to be efficiently translated into object semantics.

Primary Investigator: Nicholas Kotov, University of Michigan – Ann Arbor, MI


High Frequency Radar for Automotive Autonomous Applications
Sub-millimeter-wave radar system with superior detection resolutions, wide scanning range and minimal size, weight and power consumption.

Principal Investigator: Kamal Sarabandi, University of Michigan – Ann Arbor, MI


High-Performance Coatings for Engine Cylinder Bores
Process to deposit diamond-like coatings onto the inner surface of cylinder bores in order to reduce friction and resultant fuel consumption.

Principal Investigators: Thomas Schuelke and Qi Hua Fan, Michigan State University – East Lansing, MI


Multi-Material 3D Printing
Method which integrates electrical assemblies into components through micro-additive manufacturing.

Principal Investigator: Kira Barton, University of Michigan – Ann Arbor, MI


Sensor Fusion & Cognitive Computing Solution for Autonomous Driving
Reduced computing power system that converts raw sensor inputs into highly compressed “cues” to enhance the accuracy of real-time decision making tasks such as trajectory prediction and multi-object tracking.

Principal Investigator: Zhengya Zhang, University of Michigan – Ann Arbor, MI


Variable Coupling Wireless Power Transfer System
Wireless power transfer system that achieves high efficiency at a wide range of positions and distances between transmitter and receiver.

Principal Investigator: Amir Mortazawi, University of Michigan – Ann Arbor, MI


YOWP: Your OWn Planner
Optimal travel planning search engine which produces lower costs at minimal effort for given constraints and preferences.

Principal Investigator: Barzan Mozafari, University of Michigan – Ann Arbor, MI

Automated Ergonomic Risk Assessment System for Manual Works
A computer vision-based posture analysis that can quantitatively evaluate the level of ergonomic risk workers face at dangerous or injury-prone job sites.

Primary Investigator: SangHyun Lee, University of Michigan – Ann Arbor, MI


CNC Knitting Technology
Technology allowing manufacturers to produce lightweight materials that are documented into a design database to create hybrid textile compositions reducing costs and steps in production.

Primary Investigator: Henry Sodano, University of Michigan – Ann Arbor, MI


YOWP: Your OWn Planner
Optimal travel planning search engine which produces lower costs at minimal effort for given constraints and preferences

Principal Investigator: Barzan Mozafari, University of Michigan – Ann Arbor, MI


Solid State Batteries
The mapping of the energy and power capabilities of Solid State Batteries (SSB) and validating the ability to meet the requirements of potential early customers.

Primary Investigator: Jeff Sakamoto, University of Michigan – Ann Arbor, MI

Elegus Technologies
A new generation of high capacity, high discharge rate batteries requires battery separators capable of withstanding harsh operating conditions (i.e. high currents).

John Hennessy – CEO, Co-Founder   |   Long Qian – CFO, Co-Founder   |   Siu On Tung – CTO, Co-Founder
Principal Investigator & Co-Founder: Nicholas Kotov, University of Michigan – Ann Arbor


Durable Railway Ties
Developing a durable concrete railroad tie is based on an innovative material called Engineered Cementitious Composite (ECC), popularly known as “bendable concrete,” solves the cracking of normal concrete.

Principal Investigator: Victor Li, University of Michigan – Ann Arbor


Ceramic Batteries LLC
Developing new electrode structures and manufacturing techniques to incorporate Lithium (Li)-conducting ceramic electrolytes into solid-state batteries.

Principal Investigator: Jeff Sakamoto, University of Michigan – Ann Arbor


AirMetrics Analytics
Developing an automated ultrasound inspection system that will provide comprehensive Carbon Fiber Reinforced Plastic airframe inspection, data management, and analytics

Principal Investigators: Ed Olson & Ryan Eustice, University of Michigan – Ann Arbor


Enertia Microsystems
The Birdbath Resonator Gyroscope (BRG) is a navigation-grade MEMS gyroscope that has enough accuracy to allow cars to self-navigate without relying on Global Positioning System (GPS) signals and with a positional error of less than 10 centimeters.

Principal Investigator: Khalil Najafi, University of Michigan – Ann Arbor


Parabricks
Helping companies and researchers sequence whole human genomes 48x faster than conventional next-generation sequencing pipelines saving on computation costs with faster throughputs.

Mehrzad Samadi – CEO & Co-Founder   |   Ankit Sethia – CTO   |   Principal Investigator: Scott Malhke, University of Michigan – Ann Arbor


Icephobic
Developing a durable and transparent icephobic coating that can be used to eliminate ice adhesion on an automobile’s body or windshield.

Principal Investigator: Anish Tuteja, University of Michigan – Ann Arbor

Movellus Circuits

Developing a new design methodology and innovative digital architectures for clock generators. These architectures will be implemented using digital design tools, resulting in a 5x reduction in design time and 15x in the silicone area. This will lead to lower costs and a reduction in the number of power clock generators.

Dr. Muhammad Faisal – CEO & Co-Founder   |   Dr. Jeffrey Fredenburg – VP of Engineering & Co-Founder   |   Principal Investigator: David Wentzloff, University of Michigan – Ann Arbor


Bamboo Fiber Composite Sheets 

Principal Investigator: Jack Hu, University of Michigan – Ann Arbor


IA-CAN

Principal Investigator: Kang Shin, University of Michigan – Ann Arbor


Power Split Hybrid Powertrains

Principal Investigator: Huei Peng – Ann Arbor

OVERSIGHT  COMMITTEE

Sara Blackmer, Solyco Advisors

Adrian Fortino, Mercury Fund

Patti Glaza, Invest Detroit

Brett Hinds, Ford Motor Company

Paul Krajewski, GM

Rajesh K. Malhan, Denso International America, Inc.

Dean Massab, Roush Enterprises

Bradford Orr, University of Michigan

Clay Phillips, MI-SBDC

Bryce Pilz, University of Michigan

Khaled Shahwan, Fiat Chrysler Automobiles

Chris Stallman, Fontinalis Partners

If you're interested in partnering with the CFE, click the button to reach out and learn more about how.